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A. SCIENTIFIC OBJECTIVES: The objective of this research program is to devise
innovative joint time-frequency (JTF) processing concepts for radar image enhancement
and physics-based feature extraction. In particular, we shall investigate how JTF
techniques can be utilized to enhance synthetic aperture radar (SAR) and inverse
synthetic aperture radar (ISAR) imageries by removing artifacts due to uncompensated
target motion, complex target scattering physics, articulating target components and
clutter and propagation effects. Furthermore, we set out to re-interpret the extracted
artifacts in a more meaningful feature space so that they can be utilized to enhance the
performance of target identification algorithms. This research is leveraged against our
previous JTF work under the Joint Services Electronics Program, as well as our state-of-
the-art radar signature simulation capabilities. At the end of this program, we plan to
develop a set of JTF-based radar image processing tools in the standard MATLAB

environment, so that this work can be easily disseminated to the radar community.

B. SUMMARY OF RESULTS AND SIGNIFICANT ACCOMPLISHMENTS:
During the past year, we have proceeded along two lines of research: (i) processing real
radar data to test our JTF algorithms and to identify needed areas of research, (i)
developing new algorithms to address the problem areas identified. Along the first line,

we have continued the processing of measured data from the NATO TIRA radar. By




applying the JTF motion compénsation algorithm we had developed earlier, we have
formed high-resolution ISAR images of several air targets and have compared the results
to truth images generated using instrumented flight data and simulated images computed
using the radar signature prediction code Xpatch. Through these comparisons, we have
identified several problem areas for blind motion compensation due to the presence of
either ndn-steady imaging plane or moving components on the target. These issues
cannot be handled by the existing motion compensation algorithms and are being
addressed in our theoretical algorithm development. We have also initiated an effort to
process the NATO MERIC radar data set. Blind motion compensation is more
challenging in this case, as the flight path of the aircraft is very close to the radar, which
results in large variations in the aircraft’s azimuth and elevation angles with respect to the
radar.

Along the second line of research, we have focused on the two problem areas
identified from processing of the TIRA data. First, we have developed and applied an
adaptive JTF algorithm to remove jet engine modulation (JEM) lines caused by the
scattering from the rotating engine blades of the aircraft. The algorithm distinguishes the
slow body motion from the fast engine blade motion using the phase features in the JTF
space. It is shown that JEM lines can be removed from the image to unveil the
geometrical features of the aircraft. Second, we have initiated research to address the
problem of blind motion compensation in the presence of non-steady imaging plane.
This problem can be considered in the context of three-dimensional motion compensation
and is much more challenging than conventional two-dimensional motion compensation.
Toward this end, we have developed an algorithm to detect the presence of non-steady
imaging plane during the imaging interval from raw radar data. This detection algorithm
is based on a full three-dimensional motion model and compares the phase variation of
the point scatterers in different range cells to detect the presence of three-dimensional
motion. Furthermore, we have begun to investigate ways to form a focused image when
the target undergoes such three-dimensional motion. We believe the three-dimensional
motion compensation theories developed in this topic will be quite important, especially
when imaging targets that exhibit more chaotic motions, such as ships on the ocean

surface. The detailed descriptions of our progress are described below.




Processing of NATO TIRA Radar Data. Our research thrust during the first year of
this project was to generate ISAR imagery from the NATO TIRA radar data using our
previously developed adaptive JTF (AJTF) algorithm [1]. We have continued this
activity into the second year by comparing the results against truth images generated
using instrumented flight data and simulated images computed using the radar signature
prediction code Xpatch. While the comparison among the images is quite good, we have
identified several needed areas of research in ISAR-based target recognition. Fig. 1
shows both the correlation coefficient between the JTF and truth images and that between
the JTF and Xpatch images versus azimuth look angle. From the two curves, we see that
the JTF images agree very well with the truth images, indicating that blind motion
compensation is a very feasible method for processing real-world radar data. The
correlation coefficient between the JTF and Xpatch images is slightly lower than that
between the measured images. In particular, two problem regions can be seen from this
plot. First, in the region near nose-on (180 degrees in azimuth), the correlation coefficient
is significantly lower. The reason is due to JEM lines in the measured data. This problem
is further discussed in the next section and an algorithm to remove JEM lines is proposed.
Second, at somé angles around the broadside region (90 degrees in azimuth), the
correlation coefficient is also low. In this case, both the associated JTF image and the
truth image are both found to be of low quality. After further investigation, it is found
that the image blurring is due to the non-steadiness of the imaging plane. This problem is

also being further addressed in our research.
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Removing Image Artifacts due to Jet Engine Modulation. Jet engine modulation
(JEM) is a well-known phenomenon caused by the high-speed rotation of the aircraft
engine. For imaging radar, the typical PRF is much slower than the engine rotation
frequency. Thus the resulting ISAR image in the frontal region of an aircraft contains an
aliased component along the cross range dimension, as shown by the TIRA image in Fig.
2(a). Such effect is difficult to predict accurately using simulation [2, 3]. Furthermore,
JEM lines are noise-like and can corrupt the geometrical features of the target in the
ISAR image. For ISAR-based target recognition, it would be useful to devise an
algorithm to separate the JEM lines from the target image before the subsequent
classification process. In the first year of this program, we successfully demonstrated the
separation of the rotating blade contribution from the body image in helicopter data.
However, JEM possesses new challenges due to the high rotational rate of the jet engine
and additional electromagnetic propagation effect through the inlet duct. We have
carried out JEM removal on TIRA data using the AJTF algorithm. The model we adopt
assumes that the aircraft consists of a slowly rotating body with a constant rotational
velocity Q, and a fast moving engine component with a different rotational velocity €.

The received radar return as a function of dwell time can thus be written as:

N,

4 .

E(1,) = S: A, exp[- j———ff (R(t,)+ x, c08(Q,t,) + ¥, sin(Q,t,)]
k=1

& .4 .
+ 2 A, exp[—]—icgc—(R(tD)+xk cos(Q 1) + ¥, sin(Q 2 )]

k=Ny+1

(1)

where N is the total number of point scatterers within one range cell, of which Ny, are the
body scatterers. Usually Q, is much greater than p. While the first term can be
meaningfully mapped into the image plane of the target via the Fourier transform, the
second term results in serious Doppler smearing across the cross range domain.

We can also utilize the AJTF technique to separate the fast moving part from the

relatively slow moving body. For the component due to target body scattering, the

Doppler frequency is
4 : 4
le), = ‘cigb[)’ cos(Q2,2,) + xsin(€2,1 )] = 'Tﬂfgb(y +x8tp) | )

while the Doppler frequency due to the fast rotating part is
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Fig. 2. TIRA image from a frontal view. (a) Before JEM processing. (b) After
JEM removal using the AJTF algorithm.

fl= %QP[ yos(Q,1,) + xsin(Q, £,)] 3)

We see that (2) is a linear function of dwell time while (3) is a sinusoidal function. If we
parameterize the signal by basis functions that have linear Doppler frequency behavior as
a function of dwell time, the two signals can be approximately separated by their
displacement and slope parameters. We utilize the AJTF processing technique to carry
out the parameterization. The signal component due to the target scattering is
reconstructed by using all the bases with small displacement and small slope parameters.
Fig. 2(b) shows the image after the JEM removal processing. Note that the body features
are unveiled after the JEM removal. Fig. 3 shows the correlation between the synthetic
images and the measured images from TIRA after JEM removal. We observe that the
correlation coefficients in the JEM region are increased after we remove the JEM
interference from the body. Further research is needed in this area to more definitively

assess the effect of JEM removal. This will be carried out as more measured data
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Fig. 3. Correlation between JTF and Xpatch images
after JEM removal.

become available. Furthermore, in the processing of the MERIC radar data, we have
observed very clear indication of movement from a mechanically gimbaled antenna in the

nose region of the aircraft. The algorithm will be adapted to study this issue.

Three-Dimensional Motion Detection Using JTF Algorithm. One basic assumption of
existing motion compensation algorithms is that the target only undergoes motion in a
two-dimensional plane during the dwell interval needed to form an image. From several
independent examinations of measured ISAR data sets recently, it was reported that the
presence of three-dimensional motion is quite detrimental to the formation of a well-
focused image [5-7]. This is also consistent with our own findings from the TIRA data.
For some image frames, we found that the motion compensated image and the associated
truth images are both quite poor. An example image is shown in Fig. 4(a). When we
examine the motion data from the aircraft instrument, we find that the aircraft motion is
not confined to a two-dimensional plane during the imaging interval. Fig. 4(b) shows the
plot of the elevation versus azimuth look angles of the aircraft from the radar. This curve
should be linear if the motion is strictly two-dimensional, and in this case, there is clearly
three-dimensional motion. In general, we will not be able to form a focused image using

an existing motion compensation algorithm based on the two-dimensional motion
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Fig. 4. Effect of non-steady imaging plane on image quality. (a) A poorly
focused image. (b) The corresponding target motion from the
instrumentation data.

assumption, since the assumed model is mismatched to the actual target motion. Our goal
in this research is to develop a general motion compensation algorithm to handle targets
with arbitrary three-dimensional motion. However, this problem is quite challenging.
Instead, we first address a less ambitious problem of detecting the presence of three-
dimensional motion from raw radar data. It is hoped that the solution here will be a
stepping stone to the ultimate three-dimensional motion compensation problem.

Allowing for arbitrary three-dimensional motion in space, we consider the

following model as a generalization of the two-dimensional motion model:
& .47
E(ID)=2A1¢ exp[—JT(xk+yk9(tD)+Zk¢(lD )] 4)
k=1

where @ is the azimuth angle of the target with respect to the radar, and @ is the elevation
angle. In (4), it is assumed that the translation motion has been removed and that the
standard small-angle, small bandwidth approximations apply. This model reduces to the
standard two-dimensional motion model when € and ¢ are linearly related. Our
approach to the three-dimensional motion detection problem is to utilize the AJTF
algorithm to extract the phase behavior of the radar data at multiple range cells. It can be

shown that when the target undergoes only two-dimensional motion during the dwell
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Fig. 5. Blind detection of three-dimensional motion from TIRA data. (a)
Degree of three-dimensional motion over 20 image frames detected
using the proposed algorithm. (b) Degree of three-dimensional
motion measured from the instrument data.

duration, the relationship between the phase extracted from one range cell and that from
another range cell should be linear. For three-dimensional motion, the relationship is in
general nonlinear. Therefore, by examining the linearity of the phase relationships from
different range cells, we can distinguish two-dimensional motion from three-dimensional
motion. Fig. 5 shows our preliminary results from the TIRA data. Fig. 5(a) shows the
degree of three-dimensional motion in the data for 20 different image frames, detected by
applying our algorithm to the raw TIRA radar data. As a reference for comparison, Fig.

5(b) shows the degree of three-dimensional motion for the same 20 frames measured




using the instrumentation data. It can be seen that our algorithm correctly detects where
significant three-dimensional motions exist. We are currently fine tuning the algorithm
to achieve faster and more robust detection. We believe this detection algorithm could be
quite useful for determining the “good” imaging intervals from which focused images can
be more readily generated. For targets that exhibit very chaotic motions, such as ships on
the ocean, finding such intervals of opportunity may be very critical for target
recognition. Furthermore, we will try to devise algorithms for forming focused images

even in the presence of significant three-dimensional motions.

Processing of NATO MERIC Radar Data. We have begun to process the MERIC
radar data made available to us through the Naval Research Laboratory. Blind motion
compensation is more challenging in this case, as the flight path of the aircraft is very
close to the radar and the instrument data show more variations in azimuth and elevation
angles during the flight of the aircraft. The task is further complicated by the lack of
' sufficient instrument data (some of the ARDS pod data have been heavily down-sampled
and written into Microsoft Excel form in the MERIC data set). In addition, some of the
radar data contain very strong colored noise in the background and considerable effort
has been spent on denoising the data. Despite these difficulties, the final JTF image
quality we have generated is fairly good. Fig. 6 shows the angular motion parameters of
an aircraft for which the radar data are available. The aircraft undergoes an azimuth
rotation of about 25 degrees during the 17.5-sec collection period. While there are
35,000 pulses of radar range profiles during this duration, only 18 samples of instrument
data are available in the same duration. Consequently, no ground truthing was possible
due to the lack of sufﬁcient instrument data. To validate our results, we have generated
the Xpatch prediction using a CAD model purchased from viewpoint.com. It is however
not the exact model for the aircraft used in the measurement. The model was first
converted into an Xpatch-compatible format. It was then edited to remove the landing
gear and bomb loads under the wings, as well as to seal up the open seams in the model.
Some preliminary comparison results are presented in Fig. 7. Figs. 7(a) and 7(b) show

respectively the JTF motion compensated image and the Xpatch predicted image near




point P of Fig. 6 in the flight path. The agreement between the MERIC image and the

Xpatch simulated image is fairly good, considering the uncertainties in the CAD model.
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(b) Xpatch simulated image at point Q.




Figs. 7(c) and 7(d) show respectively the JTF motion compensated image and the Xpatch
predicted image near point Q of Fig. 6 in the flight path. It is clear that the agreement is
quite poor in this case. The blind image formation is quite challenging during this
particular portion of the flight. Furthermore, we are not certain of the exact imaging
plane for the simulation due to the sparseness of instrument data. We plan to continue
work on this data set and hope to eventually use the data set to further our investigation
on three-dimensional motion detection and compensation. In addition, an interesting
phenomenon was observed from the motion compensated image of a second aircraft. The
formed images show Doppler smearing near the nose region. After some research on this
aircraft, we have determined that it is very likely due to movement from a mechanically
scanned antenna in the nose cone of the aircraft. We plan to examine this topic in more

detail.

C. FOLLOW-UP STATEMENT:

During the coming year, our research effort will be devoted to developing new
algorithms to attack the research problems we have identified through our work in
measurement data processing. The research areas include: (i) three-dimensional motion
detection and three-dimensional motion compensation, and (ii) image formation and
feature extraction of targets with multiple moving parts. We believe these two problems
are of fundamental importance in ISAR imaging, as the current state-of-the-art ISAR
algorithms are limited by the two-dimensional motion and rigid body assumptions. For
real-world data that involve more complex motions, such as ships with arbitrary motion
and moving ocean surface, a more generalized motion compensation framework will be
highly desirable. In addition to algorithm development, we will also continue our effort
to process new radar data as they become available to us. Our work in the MERIC data
will continue, and we will more closely examine the ship data from the Navy small craft
ATR program. The measurement data processing enables us to identify relevant
problems that can feed back into our theoretical investigation. Furthermore, the
processed data sets provide us with a well-understood database, from which we can test

our new algorithms.
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Adaptive ISAR Image Construction from Nonuniformly
Undersampled Data

Yuanxun Wang and Hao Ling

Abstract—An adaptive approach is proposed to construct ISAR images
from nonuniformly undersampled data in the angular domain. The algo-
rithm uses an adaptive scattering feature extraction engine in place of the
Fourier transform in the image construction procedure. The algorithm en-
tails searching and extracting out individual target scattering féatures one
at a time in an iterative fashion. The interference between different target
scattering features is thus avoided and a clean ISAR image without the
aliasing effect can be obtained. The algorithm is verified by constructing the
ISAR image from the chamber measurement data of the model VFY-218

airplane. ’
Index Terms—Image reconstruction, synthetic aperture radar.

I. INTRODUCTION

Constructing an inverse synthetic aperture radar (ISAR) image of a
target requires data collection in both the frequency and angular dimen-
sions. If the data are uniformly sampled and the sampling rate is dense
enough, an ISAR image can be obtained by using a two-dimensional
(2-D) fast Fourier transform (FFT) algorithm [1]. In this paper, we ad-
dress the case when the angular data are nonuniformly undersampled.
This scenario may arise in real-world data collection when the target
is fast maneuveting with respect to the radar pulse repetition interval
so that the angular look on the target by the radar is not dense enough
to satisfy the Nyquist sampling rate. We propose an algorithm to over-
come the aliasing effect in the cross-range dimension and construct
ISAR images from seriously undersampled data. The algorithm uses
an adaptive scattering feature extraction engine in place of the Fourier
transform in the image construction process. The original concept of
adaptive feature extraction was proposed in [2] and [3]. It has been ap-
plied to ISAR image processing in the joint time—frequency space for
resonant scattering mechanism extraction (4], target motion compensa-
tion [5], and Doppler interference removal [6]. In contrast to the Fourier
transform, where the signal is projected to all the image-domain bases
simultaneously, the adaptive algorithm searches and extracts the indi-
vidual target scattering features one at a time in an iterative fashion.
When applied to the present problem, the aliasing error caused by the
interference between different target scattering features can be avoided.
Therefore, after all the main features are extracted, they can be dis-
played in the ISAR image plane without the aliasing effect. We verify
this algorithm by constructing the ISAR image using the chamber mea-
surement data of the model VFY-218 airplane [7]. It is found that a rea-
sonable ISAR image can be constructed from seriously undersampled
data.

II. ADAPTIVE FEATURE EXTRACTION (AFE) ALGORITHM

In standard ISAR image construction, the target is assumed to be a
collection of point scattering centers. Under the small-angle approx-
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imation, the scattered field from the target observed as a function of
frequency and angle can be written as

N
—2ikz; -5 :
z : 0(2:.’, yi)e 2jkx; cos@—~2jky,sin @

i=1

N . .
23" O(xi,yi)e 2hmim2keon 1)

i=1

E(f,0) =

where O(z;, y:) is the amplitude of the ith scattering center, k is'the
free-space wave number, and k. corresponds to the wave number at
the center frequency. z; and y; denote the down range and cross-range

dimensions, respectively. We assume that the sampling in frequency -

is uniformly spaced and dense enough to satisfy the Nyquist criterion
since it is completely controlled by the radar. Thus, the range pro-
file versus angle data can be generated from the frequency-aspect data
by applying a one-dimensional (1-D) Fourier transform along the fre-
quency dimension. We shall denote the result as R(z, §)

- N
R(z,0) =Y O(i,4:)Se( — zi)e~kevse, @)

i=1

In the above expression, S:(z — z;) is the down-range point spread
function due to the finite-length frequency domain data. Similarly, the
cross-range information can also be obtained from angular data via a
1-D Fourier transform of R(z, ) along the angular dimension. The
resulting image I(z,y) is

I(z,3) = / R(z,8)¢**<+° g

N .
= Z O(zi,9:)Sz(z — z:) / e2ikcOu=v:) 4o

|—l

= Z O(z.,y.)Sz(z - zi)8y (v — vi) (3a)

i=1

where

Sy—y) = [ et gg (3b)
is the cross-range point spread function due to the ﬁmte-length angular
domain data. If the data are sampled densely enough such that the nu-
merical integration can be carried out accurately, the point-spread func-
tion Sy should be a well-localized function with its peak at y;, while
rapidly decaying away from the peak. The resulting image I(z, y) will
be a clean image with good indication of the amplitudes and posi-
tions of the target point scattering features. However, when the data
are undersampled, the numerical integration in (3b) will result in large
aliasing error that shows up as high sidelobes in S,. Consequently, the
constructed image will contain strong interference between the scat-
tering features. This effect can be interpreted as the loss of orthogo-
nality of the Fourier bases under the undersampled condition.

In the proposed approach, we use an adaptive feature extraction al-
gorithm in place of the Fourier processing. Instead of projecting the
signal onto all the exponential bases simultaneously, we search out the
strongest point scattering feature in the cross-range domain and remove
it from the original signal. Then the search is repeated for the remainder
signal and the point-scattering features are extracted one at a time until
the energy of the residue signal is smaller than a preset threshold. The
search procedure is carried out by calculating the integral in (3b) for all
points in cross range but saving only the maximum value and position,
ie.,

[Bp, yp] = max [Tp(z, )] @
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The ISAR image constructed at 30° azimuth from the original data
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Fig. 2. The ISAR image constructed at 30° azimuth from randomly
undersampled data using Fourier transform.

where p denotes the stage of the iterative procedure. The remainder
signal is produced by subtracting out the pth feature

Rp(z,0) —

The convergence of the above procedure is guaranteed and the math-
ematical proof is given in [2]. The advantage of such an iterative pro-
cedure is that each time we extract out the strongest feature, we also
eliminate its interference on the other features. It should be noted that
nonuniform sampling is a prerequisite to ensure that there is no ambi-
guity in the strongest features since uniformly undersampled data will
result in multiple positions of the strongest features. For simplicity, the
algorithm is repeated for each range cell of the image. A 2-D algorithm
in frequency and aspect can also be developed, if the search is carried
out for both the range and cross-range parameters. After all the features
are extracted out, we can construct an ISAR image using the amplitudes
and positions of the point scatterers.

Rpy1(z,0) = Bpe~2ikevst, 5)

III. RESULTS AND DISCUSSION

To examine the applicability of the algorithm on real target scattering
data, we reconstruct the radar image of a model (1 : 30 scale) VFY-218
airplane using undersampled chamber measurement data [7]. The mea-
surement data consist of an aspect window from 10° to 50° and a fre-
quency range from 8 to 16 GHz. To construct an ISAR image, we first




IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO.-2, FEBRUARY 2000 33t

03y

(214

eap

&

Cross range (m)

-22F

£ 2 d

T T S T T T Y ()
. Range (m) ’

Fig. 3. The ISAR image constructed at 30° azimuth from randomly
undersampled data using the AFE algorithm.

polar reformat the frequency-aspect data to the (K, K ) space. The
reformatted data consist of 401 samples in K. and 438 samples in K.
The ISAR image is first generated by fast Fourier transform (FFT) and
shown with the airplane overlay in Fig. 1. The point-scattering features
can clearly be seen. Next, we test our algorithm by generating an under-
sampled data set in K. This is approximately the same as undersam-
pling in angle. (Note that for full size targets, this approximation gets
better.) The Nyquist sampling rate requires about 36 sampling points
in K, and we randomly select only 24 out of the 438 points. The max-
imum sampling interval used is about four times the size of the Nyquist
sampling interval. Therefore, serious aliasing will occur if the Fourier
transform algorithm is used, as shown by the ISAR image displayed in
Fig. 2. All the features are ovcrlapped with sidelobe noise such that the
point scattering features on the airplane can no longer be distinguished.
Next, we apply the adaptive feature extraction (AFE) algorithm to each
range cell of the image. The image is reconstructed and shown in Fig. 3.
Comparing Fig. 3 with Fig. 1, we can see the main features of the air-
plane in Fig. 3 are all well reconstructed in Fig. 1. We do observe some
noisy spots outside the target at the lower dynamic ranges in Fig. 3.
This low-level noise occurs at about 25 dB down from the key features
and presents a dynamic range limitation of the present AFE algorithm.
The algorithm has also been tested on measured data from in-flight tar-
gets with good success.
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CLUTTER REDUCTION FOR SYNTHETIC APERTURE
RADAR IMAGERY BASED ON ADAPTIVE WAVELET
PACKET TRANSFORM
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Abstract-An adaptive wavelet packet transform (AWPT) algorithm
is proposed to process synthetic aperture radar (SAR) imagery and
remove background clutters from target images. Since target features
are more efficiently represented using the wavelet packet bases, higher
signal-to-clutter ratios (SCR) can be achieved in the wavelet transform
domain. Consequently, clutters can be more effectively separated from
the desired target features in the transform domain than in the orig-
inal SAR domain. The processed results based on the MSTAR data
set demonstrate the effectiveness of this algorithm for SAR clutter re-
duction. '
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2. Wavelet Packet Basis for signal Representation
3. SAR Image Clutter Reduction Using Adaptive ‘Wavelet
Packet Transform
3.1 Statistical Signal Model
3.2 Best Wavelet Packet Basis for Maximization of Signal-to-
Clutter Ratio .
3.3 Implementation of Adaptive Wavelet Packet Transform for
SAR Image ' ’
4. Processing Results
4.1 Wavelet Filter for SAR Image Transform
4.2 Frequency-Dependent Thresholding
4.3 Post-Processing
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4.4 Performance Metrics for MSTAR Data Processing
5. Conclusions '
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1. INTRODUCTION

Synthetic aperture radar (SAR) images of ground targets after the
focusing process generally consist of target images and clutters from
background scattering [1]. The clutter signal is undesirable since it in-
terferes with the actual target features in automatic target recognition
(ATR) applications, and has to be removed before ATR processing.
The traditional way to suppress clutter is to choose a threshold using
CFAR that is based on the standard deviation and mean value of the
clutter, and the threshold is applied to the SAR image chip to remove
the clutter directly [2, 3]. However, this approach assumes that the
target signal-to-clutter ratio (SCR) is large enough. If this assumption
is not true, this approach results in either target feature loss or large
clutter residues. In this work, we investigate the use of orthogonal basis
transformation to increase the SCR for more effective clutter removal.
More specifically, our approach is to find the best wavelet packet basis
to represent a SAR image using the adaptive wavelet packet transform
(AWPT) [4-9].

Wavelet packet basis is a generalization of the conventional wavelet
basis. It retains the multi-resolution property of the conventional
wavelet basis while abandoning the rigid constant-Q structure in the
decomposition. Wavelet packets have been applied to image compres-
sion [7] and moment matrix sparsification [9] with good success. Theo-
retically they include regular pulse basis, FF'I' basis, short-time Fourier
transform (STFT) basis, as well as conventional wavelet basis. In this
application, we transform the SAR image into the wavelet packet basis
to maximize the signal-clutter-ratio in the transform domain. Since
a typical target image usually consists of point scatterers and more
diffused region features, the multi-scaled wavelet basis is well suited to
focus the target image. Clutter in the images, on the other hand, is sta-
tistically uncorrelated (or weakly correlated) from pixel to pixel, and
the transformed clutter image under the same set of bases remains un-
focused [8, 10, 11]. Therefore, we expect that the SCR can be increased
by transforming the original image with an appropriately chosen set of
wavelet packet basis. To determine the best basis for a SAR image, we
implement the AWPT algorithm to search for the best wavelet packet
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basis based on a cost function that describes how well the target signal
is focused in the transform domain. Because clutter in a SAR image is
usually not strictly white, we apply a frequency-dependent threshold
to the transformed image. We then inverse-transform the thresheld
image in the wavelet packet basis domain back to the SAR domain to
obtain a de-cluttered target image.

This paper is organized as follows. In Section 2, we introduce the
basic concept of wavelet packet basis. In Section 3, we discuss problem
formulation and the algorithm for SAR clutter rejection based on the
adaptive wavelet packet transform. In Section 4, we present the test
results of the algorithm using the MSTAR data set [12]. In Section 5,
we draw some conclusions from this work.

2. WAVELET PACKET BASIS FOR SIGNAL
REPRESENTATION

A wavelet packet basis function can be expressed in the space domain
as:
Oi(z) = 279227 9s k), k€ Z, j€Z, neZy (1)

where k, j, and n denote the space shift, scale, and modulation index,
respectively. The function 4, can be generated from the decomposi-
tions of both the scaling function and mother wavelet function using
the “two-scale equation” [4, 5]. The parameter choice of a wavelet
packet basis is not unique for a complete and orthogonal decomposi-
tion of a signal in L? space. For a wavelet packet basis function cp;-‘ K
we define its dyadic interval I;, C R in the frequency domain as [4,
9]:

Iin=[27n, 279(n+1)) (2)

For the complete and orthogonal wavelet basis functions {7} chosen
to represent a signal in L? space, their dyadic intervals should be
disjoint and cover the entire signal bandwidth, i.e.,

(Lin = (@] (3)
imn

and _
ULi~=100.1) (4)

jm
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Therefore, the wavelet packet basis function ¢ can be interpreted as
a modulated wavelet with a central frequency of 277(n +1/2) and a
normalized bandwidth of 277.

For two-dimension image decomposition, the 2-D wavelet packet
basis function can be configured from two 1-D wavelet packet basis
functions as follows:

Ui o(m,n) =4 o7 (5)

In (5), we restrict the scales of the two 1-D basis functions to be the

same. This guarantees the basis functions will be of the same size in
the horizontal and vertical directions, and remove the inter-scale cou-
pling terms in the transformed image. For a complete and orthogonal
decomposition, the two 1-D basis functions in (5) must also meet the
requirements in (3) and (4).

Assuming that the original image in the spatial (SAR) domain is
{s(m,n), 0 < m, n < N}, we define a set of complete and orthonormal
2-D wavelet packet basis functions:

Ul (k,(1)0<j<J 0<p qg<2, 0<k Il<N27 (6)
pq

where j denotes the scale, J = logy(N), p and g are the frequency
modulation indices, and k, [ are the position indices. The decompo-
sition coefficients of the image s(m,n) using the wavelet packet basis
(6) are:

8lalkl) =323 s(m,m)Ufg(k = 2m,L = 2'n)  (7)
m n

With the image extended to be periodic in the spatial domain, the
total number of coefficients is exactly N2 through the transform in
(7). For convenience, we refer to the coeflicients as simply a matrix
{§(m, n), 1 <m, n < N} without explicit indication of j, p and gq.

Given a SAR image s(m,n), we set out to find the best wavelet
packet basis to maximize the SCR in transform domain. In the other
words, we try to make the transformed coefficient matrix {S(m,n),
1< m,n < N} as sparse as possible.
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3. SAR IMAGE CLUTTER REDUCTION USING
ADAPTIVE WAVELET PACKET TRANSFORM

3.1 Statistical Signal Model

We assume that a focused SAR image in spatial domain is:
{s(m,n), 0 <m,n < N} (8)

Ignoring additive noise and possible multiplicative speckle noise in the
image, we consider a SAR image that consists of only the target image
and clutters generated from the background scattering [15]. Basically
the target image and the clutters are non-overlapping in a SAR image,
therefore there is:

_ [ t(m,n), (m,n) in target area
s(m,n) = {c(m, n), (m,n) in clutter area 0<m, n<N (9)

For a clutter pixel c¢(m,n), it includes reflections from minute scatters
inside this resolution cell. For modern coherent imaging radar with a
quadrature receiver, it can be represented as:

K
¢(m,n) = Zak exp(j2m femk)
k=1
=cr + jei (10)

where a; and 74 are the magnitude and relative two-way propagation
delay of the reflection from the k-th scatter in this clutter resolution
cell. If we assume those variables are statistically independent and K
is large, according to Central limit theorem the sum in (10) tends to
be a complex Gaussian random variable, and its amplitude is approxi-
mately Rayleigh distributed [13, 16, 17]. Although, for high-resolution
radar with a low gazing angle, the amplitude is closer to be Weibull
distributed for ground clutters, Rayleigh approximation is accurate
enough, especially for the distribution near the mean [15].

Another important assumption about SAR clutters is that clutters
in different pixels are statistically independent {13-16]. Therefore, we
have:

E [e(m,n)c*(p, q)] = 028(p — m)é(qg — n) (11)
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where o, is the clutter standard deviation, and 4 is the Dirac function.

Using ergodic characteristics of independent identical random vari-
ables, the statistical mean value in (11) can be approximated with a
spatial average:

E [c(m, n)C*(p1 Q)] = Z Z C(k, l)C*(k +p-— mal +q- n)
k1

= 026(p— m)d(g —n) (12)

‘From (12) we find the clutters are spatially uncorrelated, which provide
clutters a distinct feature from the target signal. But we must note
that for SAR clutters there is some weak correlation among adjacent
pixels, thus (12) is not quite right if p —m and g —n are close to
ZEros.

Generally the target area is in the central part of a SAR image, and
the clutters are located in surrounding parts. We define that the target
signal is zero in clutter area, and the clutter is zero in target area, i.e.,

t(m,n) =0, (m,n) in clutter area (13)
c¢(m,n) =0, (m,n) in target area (14)
Because zero values don’t contribute anything to the summation in
(12), the definition in (14) doesn’t affect the autocorrelation property
of clutters in (12) as long as there are enough actual clutter samples in
the correlation. Also the zeros in (13) won’t affect the autocorrelation

property of target image.
Considering (9), (13), and (14), we have:

s(m,n) =t(m,n) +c¢(m,n) 0<m, n< N (15)

With the additive model in (15) for a SAR image, we need to find the
best wavelet packet basis to maximize Signal-to-Clutter ratio in the
transform domain.

3.2 Best Wavelet Packet Basis for Maximization of Signal-to-
Clutter Ratio

If we apply a wavelet packet basis shown in (6) to a SAR image
s(m,n) in (15), the transform coefficients are:

8,k =13 s(m,n)UJ (k — 2'm, 1 — 2n)
m n

=T1 (k,1) + CY 4(k,1) (16)
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where:
Th (1) = 33 tm,n)Uj (k- 2'm,1 - 2n) (1)
m n

Clak,) = DD clm, )V (k — 2m, 1~ 2/n)  (18)
m n

are the coefficients for target image and clutters, respectively.

Because a liner combination of independent Gaussian random vari-
able, the clutter coefficients still are Gaussian distributed. If we re-
write (18) into a simple form, and note that wavelet packet basis is
orthonormal, there are:

Ck,1)=Y_Y_c(m,n)U(k,l,m,n) (19)

and
E [O(k,1C" G, )]
_p [; 3 ctmmU ) 300G 0
= ;;Z > Ele(m,n)c*(p, q; U (qk, l,m,n)U(i,j,p,q)
SH> ZP; i 0:8(p — m)5(a — Uk, m, m)U i 5,3, )

=YY o U(k,l,m,n)U(i,j,m,n)
=0:0(i — k)86(F — 1) (20)

Therefore, the clutter coefficients are uncorrelated, thus independent
Gaussian statistical variables with the same mean and variance as those
of the clutter in spatial domain. ‘

We have demonstrated that the statistical characteristics of SAR
image clutters don’t change after wavelet packet basis transformation.
But target image is correlated to itself. We need to find a wavelet
packet basis to make transformed target image further concentrated,
and increase the signal-to-clutter ratio in transform domain, in other
words, we need to make transformed target image sparse. A cost func-
tions is needed to measure the sparsity of the transformed signal, thus
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the best wavelet packet basis can be found for a specific image to
achieve the maximum sparsity in the transformed image. A typical
cost function for sparsity is entropy function. But entropy function
itself is not an additive cost function, which makes it inapplicable in
a fast global best basis search algorithm. A modified additive en-
tropy function was proposed [18, 19}, but it requires computation-
intensive logarithm operation to evaluate function cost, and is unsta-
ble in the environment with clutter or noise interference. Alternatively
_we use I[P energy concentration function as cost function in this ap-
plication. The IP energy concentration function of a data sequence
{z(k), k=1,2,...,K} is defined as:

K
C=> lak)P 0<p<2 (21)

k=1
For a transformed SAR image with a coefficient matrix [3'] , the cost

function is: _ P

C=ZZIS(k,l)| 0<p<?2 (22)

k1
For convenience and efficiency, we usually choose: p =1 in (22). Sup-
posing we transform a sequence {z1,z2,---,Zr} into another sequence
{#1,%2,--+,%1} with a wavelet packet basis using the cost function of

(22), the transformed sequence is the sparsest if all of them excerpt
one are zeros, accordingly the cost is the minimum in this case. We
illustrate the best basis selection criterion based on the energy concen-
tration cost function in (21) using a simple case: assuming that a data
sequence is {z1,z2} with energy equal to 1, and its orthonormal basis
transform coefficients are {Z,Z2}, we have:

Z21]? + |22/ = 1 (23)
The cost function is:
Cost = |Z| + |Z2] (24)

As shown in Figure 1, transformed data must be a point on the circle
with radius of 1 because of constant energy constraint. The Lines
a, b, and ¢ are the energy concentration cost functions with p = 1.
The cost function lines must cross the one-fourth of the circle to satisfy
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%]

Figure 1. Relationship between the sparsity of a basis transformed
signal and the energy concentration cost function.

the energy constraint. Apparently on Line ¢ the blank point is the
transformed data, but it has the highest cost, and worst sparsity. On
Line a, two white points are the possible transformed data. They have
the lowest cost, and best sparsity for all possible basis transformation.
The gray points on Line b are the transformed data with cost and
sparisty between the best and the worst. Therefore, based on the
energy concentration cost function, we can effectively find the best
transform basis to maximize the sparsity of the transformed signals.

Due to the non-overlapping of target and clutter in spatial domain,
mostly the coefficients for target and clutter are also separated in the
finer scales in the transform domain. Thus the total cost of the trans-
formed SAR images in (16) is approximately equal to the sum of the
costs of transformed target images and clutters, i.e.,

Cost ([§]) &~ Cost ([’T]) + Cost ( [6]) (25)

where |S , T , and 6] are the transform coeflicient matrices

for the whole SAR image, target image, and clutters, respectively.
The cost of transformed clutters doesn’t change because they are the
random variables with exactly the same distribution as that of the
original clutters in spatial domain. The minimization of the cost of
the whole transformed SAR image is equivalent to the minimization
of that of the transformed target image, and thus the maximization of
target signal-to-clutter ratio in the transform domain.
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3.3 Implementation of Adaptive Wavelet Packet Transform
for SAR Images

Theoretically we can apply every possible wavelet packet basis to a
SAR image, evaluate the cost of the every transformed image, and find
the best wavelet packet basis with the least cost. But the brutal force
computation is impractical to implement because there are too many
eligible wavelet packet bases for a specific application and the direct
convolution in (7) is computationally too costly. Fortunately, in [18] a
fast decomposition algorithm was proposed to search the best wavelet
packet for a data sequence based on additive cost function, and it can
be readily adapted to 2-D SAR image processing.

Generally the original SAR image is the discretized samples using
pulse basis, and it can be approximated as the coefficients of wavelet
packet basis with the highest spatial resolution, i.e., in the finest scale.
The decomposition coefficients in the next scale are related to the ones
in current scale by “2-scale equations” using a pair of quadrature filters
{h(n)} and {g(n)}.

Assuming that the initial image samples are represented with a ma-
trix [S], its decomposition coefficients at the next scale can be obtained
through the convolution and down-sampling of [S] and quadrature fil-
ter impulse responses {h(n)} and {g(n)}, i.e.,

S@. (m,n) = Z Z s(k,1)g(2m — k)g(2n — 1)
S (m,n) = Z Z s(k, ))h(2m — k)g(2n — 1)
S (m,n) = Z Zs(k,l )g(2m — k)h(2n — 1)
(2) ) (m,n) = ; EZ: s(k,)h(2m — k)h(2n — 1)

(26)

where {h(n)} and {g(n)} denote the impulse responses of low- and
high-pass Quadrature Filters (QFs), respectively. The decomposition
in (26) is widely referred as quadtree decomposition, which is illus-
trated in Figure 2. The quadtree decompositions can be applied recur-
sively until the coarsest scale is reached. Apparently the decomposition
at each scale needs O(N?) operations, and the number of total avail-
able scales is about log,(N). Therefore, the total computation cost
to implement the full decomposition from spatial domain to frequency
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S S
S(m,n) =
Siz S

Figure 2. Quadtree decomposition structure.

domain is about O(N?log,N) operations using the quadtree decompo-
sition method. Because the cost function is additive, the best wavelet
packet basis and corresponding transform coefficients can efficiently
found from the fully quadtree decomposed result. With regard to a
SAR image the procedures to find the best wavelet packet basis and
the transform coefficient are as follows:

1. Fully decompose the initial image into frequency domain using
quadtree decomposition.

2. Use the wavelet basis at the last scale as the best initial basis,
and its cost as the best initial cost.

3. Trace back from the last scale, and comparing the cost at every
node with the smallest cost in the all branches decomposed from
the node. If the cost is reduced, update the best basis and the
corresponding cost using this node; otherwise continue the back-
ward search for the best basis.

4. The best basis and its transformed coefficients are found when
the search comes toward the first scale, i.e., the initial spatial
sampling data.

4. PROCESSING RESULTS

With the principles described, the clutter in a specific SAR image can
be removed in the wavelet packet basis domain. The clutter removal is
implemented by thresholding processing in the transform domain with
a higher Signal-to-Clutter ratio compared with direct thresholding in
spatial domain. But even the thresholding processing in transform
domain will inevitably cause the target image loss, while the clutter
is suppressed. In the processing, we choose a threshold level to keep
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target image loss under an acceptable level, and allow some clutter
residues to exist after the processing. The clutter residues can be
easily removed by some post-processing such as additional thresholding
and clustering processing in spatial domain. The processing scheme for
SAR clutter reduction using AWPT method is shown in Figure 3. This
clutter reduction scheme is applied to standard MSTAR SAR images
[12]. A typical focused MSTAR image with clutters is shown in Figure
4. The image size is 128 x 128, and the resolution is about 0.3m x
0.3m. The target in the image is BTR-70 transportation vehicle, and
the clutter was generated from background vegetation scattering. From
the image, we can find that the reflections from the rear part of this
vehicle are weak and indistinguishable from the background clutters
due to the signal blockage by the front part of the target. It would be
difficult to remove all clutters and keep the whole target signal intact
using direct thresholding method.

4.1 Wavelet Filter for SAR Image Transform

Wavelet packet transform of an image can be implemented by re-
cursive quad-tree decomposition of the original spatial sampling data.
Based on “two-scale equations,” the coefficients in the coarser scales
can be derived from the coefficients in the finer scales. Considering
the original sampling SAR data as the transform coefficients with the
finest scale in spatial domain, we can obtain all wavelet packet trans-
form coefficients by repeatedly filtering and down-sampling of the orig-
inal spatial image using a wavelet filter. To maximally concentrate the
energy of the transformed image, we choose Daubechies wavelet filter
in this application. It is the most commonly used orthonormal wavelet
filer; and the corresponding wavelet basis functions possess localiza-
tion property in both time and frequency domains. The order of the
wavelet filter is related to the vanishing moments of the wavelet ba-
sis functions. The higher the wavelet filter order, the more vanishing
moments the basis functions, thus the more concentrated the trans-
formed coefficients. However, through the convolution operation, the
finest spatial resolution available for the transformed coefficients is the
order of the wavelet filter. For a SAR image with scattering points
in high spatial resolution, the wavelet filter of low order is desired for
efficient representation of those scattering points in the transform do-
main. Therefore, we choose Daubechies filter with the order of 6 as the
wavelet filters in this application. Using the AWPT algorithm based on
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2-D Adaptive Wavelet Packet
SAR Image Data Transform (AWPT) of SAR
with Clutter in Images with Sparsity
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Figure 3. The processing scheme of automatic SAR clutter reduction
based on Adaptive Wavelet Packet Transform (AWPT).

Figure 4. SAR image for BTR-70 transportation vehicle with vegeta-

tion clutters.

the quad-tree decomposition, we transformed BTR-70 image in Figure
4 into AWPT domain. The transformed image is displayed in Figure
5. The value of the corresponding energy concentration cost function
is about 595 for the best wavelet packet basis, opposed to 777 of the
cost function value in spatial domain; while the cost function value is
about 641 if the conventional wavelet transform is applied to the im-
. age. Apparently we achieve the sparsest transformed image using the

AWPT algorithm.




14 Deng and Ling

Figure 5. The basis transformed BTR-70 SAR image using AWPT.

4.2 Frequency-Dependent Thresholding

To remove clutters in the AWPT domain, we need to apply a thresh-
old level to the transformed coefficients of SAR images. The common
thresholding method is the soft-shrinkage proposed in [10], in which the
above-threshold signal amplitude is reduced by a level of the thresh-
old. The soft-thresholding is generally applicable to the cases that
signals and noise or clutter are spatially overlapping. For SAR im-
ages, the target image and clutters are basically non-overlapping even
in the transform domain. Hard-thresholding is a better choice, and it
is defined as follows:

S(m,n) if |S(m,n)|>T

g’m,n = - ‘
(mn) 0 if [S(m,n)|<T

(27)

where: T is the threshold level.

If the spatial clutters are white and Gaussian distributed, the trans-
formed clutters, as we have demonstrated, are still white and Gaus-
sian distributed. Based on Newman-Pearson Criterion [15], the best
threshold level is a constant provided that it meets requirements for
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probabilities of false-alarm and target detection. But for SAR images,
a pixel has some weak correlation with its adjacent pixels. Therefore,
the clutter on a SAR image is not really white, and its power spectrum
is stronger in lower frequencies. We design the threshold levels that
are dependent on the central frequency for the quad-tree decomposition
outputs at each of the final branches. For the output of one of out-
ermost branches of the quad-tree decomposition, the central vertical
and horizontal frequencies are assumed to be fy and fy, respectively,
and the central frequency at that output branch is considered to be:

fc= \/f‘2/+f12{ (28)

From quad-tree decomposition structure, we can find out the frequen-
cies fy and fy, noting that due to the down-sampling, for two-
channel decomposition of higher frequency band data, the high fre-
quency components come out from low frequency filter output; while
the low frequency components from high frequency filter outputs.
Therefore the threshold level for the quad-tree decomposition output
branch with central frequency fc is:

C-oc

B+ f&

where C is a constant, o, is the clutter standard deviation, and o
and S are the parameters used to fit the mode to actual clutters.
Therefore, the threshold level is the largest in low frequency, and the
smallest in high frequency. Due to hard-thresholding processing, there
is no DC energy loss for target image even with a high threshold level
in near-DC areas. For MSTAR image processing we choose: a =
08 ~ 1, and 8 = 0 in (29) to approximate the clutter spectrum
characteristics and achieve the best clutter rejection performance. The
AWPT transformed BTR-70 image is thresheld with parameters: C =
0.5, = 0.85, and 8 = 0 in (29), and shown in Figure 6. Using
frequency-dependent threshold, we still can keep the delicate high-
frequency components, which represent the important point-scattering
reflections in the SAR images. But we could lose or blur the point-
scattering signals after the processing if just using a constant threshold
level for all transformed coefficients.

(29)

T(fc) =
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Figure 6. The transformed BTR-70 SAR image after frequency-
dependent thresholding processing.

4.3 Post-Processing -

Through thresholding processing most SAR image clutters are elim-
inated in the AWPT domain. The original SAR images can be re-
stored by inverse-transforming the wavelet coefficients to spatial do-
main based on the same basis in the quad-tree decomposition. Simi-
larly the inverse-transform can be efficiently implemented with filter-
ing and up-sampling using another pair of filters {P(n)} and {Q(n)}.
Even with thresholding processing in AWPT, there are still some clut-
ter residues existing. After the inverse-transform, those clutter resides
will spread over SAR domain. Therefore, a second small threshold and
a clustering processing are applied to the restored SAR image to fur-
ther improve clutter rejection performance. The clustering algorithm
replaces with zeros any connected non-zero blocks that have fewer el-
ements than a pre-defined block size. Usually we set the block size to
larger than the clutter residue sizes and smaller than target block size.
For MSTAR images a clustering block size of 32 is usually enough to
eliminate all clutter residues. Figure 7 is the restored BTR-70 image
through post-processing with a second threshold level of about 0.1c.
Also the best processing result using direct thresholding and clustering
processing is shown in Figure 8. Apparently an essential part of the
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Figure 7. The restored BTR-70 image with thresholding in AWPT
domain and post-processing in spatial domain.

Figure 8. The de-cluttered BTR-70 image with direct thresholding
processing in spatial domain.
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target is lost in the direct thresholding processing because of low signal-
to-clutter ratio in spatial domain, which thus poses a threat to correct
target identification afterwards. Through the AWPT processing, the
whole original target image is kept, while the clutters are completely
removed.

4.4 Performance Metrics for MSTAR Data Processing

For a SAR image recovery processing the clutter rejection perfor-
mance of an algorithm can be measured based on the ratio of mean
square error to clutter standard deviation. But in the cases of absence
of the original reference signals as for MSTAR images, the improve-
ment of average target image signal-to-clutter ratio is a reasonable
substitute. We define average target Signal-to-Clutter Ratio (SCR)

as:
>3 [86.9)
i j

SCR = (30)

Noc

where 5(i,7) is the processed target pixel, N is the total number of
target image pixels, and o, is the clutter standard deviation.

The clutter rejection performance of an algorithm can be mea-
sured based on SCR improvements through its processing. In the
AWPT clutter rejection processing, we gradually increase the AWPT
domain threshold level, and measure the SCR improvements due to
the thresholding processing in the AWPT domain (prior to the post-
processing), while keeping the target image loss inside an acceptable
range. Figure 9 shows SCR vs. the target image loss for three different
kinds of MTSAR images through the AWPT processing. Target Image
Loss (TIL) is defined as:

TIL = % (31)

where S and S are the average target signal amplitudes before and
after the processing, respectively. For comparisons the SCR vs. TIL
curves for Conventional Wavelet Transform (CWT) and direct thresh-
olding are plotted in the same figures. We find that for a fixed target
image loss, the AWPT algorithm almost always performs better than
the CWT or direct thresholding method.
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Figure 9. Signal-to-Clutter Ratio vs. target image loss using AWPT,
CWT and direct thresholding methods for (a) BTR-70, (b) T-72, and
(c) BMP-2 targets.
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Figure 9. Continued.

5. CONCLUSIONS

We have developed a new clutter-rejection algorithm for SAR images
based on Adaptive Wavelet Packet Transform (AWPT). It transforms
the basis function of the SAR images from the regular pulse basis to
a wavelet packet basis to make the transformed coefficients maximally
concentrated on the transform domain. The transformed image has
a higher target Signal-to-Clutter Ratio (SCR) compared with that in
conventional spatial domain, thus the clutters can be removed in trans-
form domain with less target signal losses. The method is based on the
basic assumption that a clutter pixel in a SAR image is not or weakly
correlated with one another; while target signals are strongly corre-
lated to themselves. Thus, the SCR improvements are made possible
through basis transformation.

The energy concentration function is used as the cost function to
find the best wavelet packet basis to make the transformed coefficients
with the maximum SCR. The best basis search and the basis transfor-
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mation for an image can be efficiently implemented using 2-D quad-tree
decomposition algorithm. To search the best wavelet packet basis for
a SAR image with clutters, it is very important to ensure either that
the clutters and the target image are approximately non-overlapping
after transformation in transform domain; or that the target energy
is significantly stronger than the clutter one. Hence the best wavelet
packet decomposition trees can be dominated by the target signals;
otherwise the AWPT algorithm is not applicable.

A frequency-dependent thresholding method is introduced because
the clutters in a SAR image are weakly correlated, i.e., they are “col-
ored” rather than “white,” as commonly assumed. The threshold level
for the AWPT transformed outputs are chosen based on the central fre-
quency of the data in this output. The lower the central frequency, the
higher the threshold level. Simulation results show that the careless
thresholding could degrade the performance of the AWPT algorithm
to that of conventional wavelet transform, or even worse.

Processing results on MSTAR images show that this algorithm is
very effective to remove the clutters for a SAR image with only lim-
ited clutter information such as standard deviation and rough spec-
trum characteristics required. With robust parameters pre-selected,
the AWPT algorithm can be used to automatically remove the clut-
ters in a large number of SAR images. But for the conventional direct
thresholding method, it is usually very difficult to find a threshold
level to remove all background clutters and keep the whole target im-
age unaltered. This new method is also very useful for the situations in
which the classical direct thresholding method might not work at all.
Those situations include that some parts of target image signals are
weaker than the clutter, or that the target signals and clutters are spa-
tially over-lapping resulting from un-focused processing, or multi-path
effects.
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Clutter Reduction for Synthetic Aperture Radar Images
Using Adaptive Wavelet Packet Transform

Hai Deng” and Hao Ling
The University of Texas at Anstin
Anstin, TX 78712-1084

1Introduction

Synthetic Aperture Radar (SAR) images of ground targets generally oonsist
ofurgettemsandchmusﬁombackyoundmwing [1). In automatic
mgareoognition(A‘l‘R)appﬁcaﬁons.itisdainble to remove the chutter from
themgaimagebeforeATRplming.mmndardmywmppmschnais

tolpplynnappmpda&edred:oldhvelwmewholeSARw However, this

Otherwise this direct threshold approach results in either target feature loss o
remnant clutter residue. In this work, we set out 1o develop a decluttering

i tounomkallymmthewgai:mpﬁomts.ulimageby
maximiﬁngthcsalusingtheadapdvewaveletpadnummﬁum(Awmm.
mmveletya&abasisisagmﬁdinﬁonofd:commiomlmveuhsis
[3]mdhasbeen:ppl'wdforimagecompr&bn[4]mdmmmmk

OutappxoachistomnsﬁnmtheSARhnagetonnﬂdommusingthe
wavelet packet basis. Sinceatypiulurgetinngemﬂyeomistsofpoim
musandmomdiﬂ'usedmgionfeamﬂnmli—sabdmvelubasisis
well suited to focus the target image. Clotter image, on the other hand, is
mtisﬁcallyumoueh!edﬁompinltopixcl.mddzmnsfmmedchmahmge
under the same set of bases remains unfocused. Therefore, we expect that the
S(Icunbeinmsedbymnsfnmingtheaigimlinngebymappmpﬁa&ly
chosen set of wavelet packet basis. The cost function of our AWPT algorithm is
choscnwdaaibebowweﬂthewgetsigmlisbwsedinﬂzmmfomdomam.
Anefﬁcicmbasismhalgoﬁthmisimphmemdwﬁndtheb&wavelet
packet basis. Omalgori:hmismdusingtheMS‘l’ARSARdausu[ﬁ]md
results show that an improved SCR can be achieved using the AWPT algorithm.

2. SAR Image Representation with Wavelet Packet Basis
A discrete 2-D SAR image s(m, n) can be represented as:
s(m,n)=t(m,n)+c(m,n) 0Sn,m<N )
where t(m, 1) and c(m, 1) denote the target image and the chutter in the SAR
image, respectively. We define a set of orthogonal and complete 2-D wavelet
packet basis functions: )

(Ul (kD) 0sj<J, 0< p,g<2’, 0SkI<N2™} Q)
where j denotes the scale index, J=loga(N), p, q are the modulation indices, and
k, 1 are the position indices. The 2-D wavelet packet basis function can be
generated from the product between two 1-D wavelet packet bases:

0-7803-5639-X/99/$10.00 ©1999 IEEE.

1780




U (kD =y kWi €))
V is a 1-D wavelet packet basis that can be generated from the scaling function
and the basic wavelet function using the *2-scale equation” [3-5).
The transformation of a SAR image s(m, n) using the wavelet packet basis is
thus:

Sl kD=Y 3 stmmU! (k-2'm1-2'n)
=X Xt} (k= 2'm1~2'n)+ 3 T cm,mW ., (k = 2/ m,1 - 2'm)

=T} (k.D+C!, (k1)

4
where T and C are the transform coefficieats of the target image and the clutter
in the image with the wavelet packet basis.

If we define the SCR of a SAR image. as the ratio of the average target
amplitude to the standard deviation of the clutter, the SCR of the image before
and after the transform are 7/0(c)andT/o(C), respectively. The clutter
function c(m, D) represents the reflectivity of different pixels in the background,
andismmedmbcindependemmdidemhﬂydisuihned [7]. It can be shown
that its wavelet packet transform coefficients C are still uncorrelated (8], and
thazthcs:andaxddeviaﬁonoflhechnerdosnotchangeaﬁuthcbasis
transform. On the contrary, signals from the target area are strongly correlated
anditispossibleloinausetargetenergyconcemdonwithabasis
tnnsfomation.'lhaefom.withagivenSARimageweneedtosearchandﬁnd
!hebatwaveletpackubasistomximizetheamplimdeoftbe transformed
target image.

3. Adaptive Search Procedure and Implementation
Toﬁndthebstwaveletpackecbasismdimplemem the basis transform, we

need to define a cost function to describe bow well the transformed target signal

iseonccnnuedwixhawaveletpackethasis.'l‘hebst basis is the one that

generates & transformed signal having the least cost. The most commonly used

cost function is the entropy function. Because of the complexity of evaluating

the eatropy function, we use the energy concentration function as our cost

ion in this application. For a transformed SAR image it is defined as:

Cost=3 5|51, k1) )
Jrats
Because there are many possible wavelet packet bases in (2) for the transform, it
is impractical to try each of them to find the best basis. An effective quad-tree
decomposition algorithm was generalized from that proposed in 9] to find the
best 2-D wavelet packet basis. The algorithm decomposes the original image
using 2-channel filtering with a pair of quadrature filters through all scales from
the space domain to the spectral domain. With the cost labeled at every branch,
the decomposition tree is then “pruned” back along each branch from the last
scale toward the earlier scales. The pruning process is accepted whenever it
leads to a lower cost. The best decomposition tree can be found after the search
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process with a total computational complexity of about O(N’logN). A scale-
dependent threshold is then applied to the transformed image. Because there is a
weak comelation between clutter samples, we increase the threshold level
slightly as the scale increases. The threshold level is chosen as:
Ih,=Kan/J ©6)

where j is the scale index, © is the clutter standard deviation, and K is a constant. .
With thresholding, most of the clutter is removed in the wavelet packet basis
domain, and the image is inverse-transformed back to the SAR domain to
restore the original target image using the same tree from the decomposition.
Although the SCR is much improved in the restored image, it is not possible to
remove the clutter completely through such processing. We apply a very small
second threshold to the restored image, and then use a standard clustering
algorithm to get rid of clutter residues.

4. Test Resuits

To test the effectiveness of the AWPT processing, we apply it to the MSTAR
SAR image data set. Fig. 1 shows an MSTAR image in which the target is a
ground vehicle and the clutter is due to vegetation. There are several stong
point scatters in the front of the vehicle, but the scattering from the back part is
relatively weak. Fig.2 shows the result of applying the direct thresholding
method to the image. Fig. 3 shows the decluttered image by applying the
AWPT algorithm. We choose Daubechies filter with order of 6 as the wavelet
filter, and the processing parameters used are K=1 and 0.050 for the second
threshold. By visually comparing Figs. 2 and 3, we note that some crucial
features of the target are kept in the AWPT-processed image. In both processing
methods, there is some target information loss. Fig. 4 shows the signal-to-clutter
ratio versus average target image loss for the two processing methods. It is
observed that for a fixed target image loss the AWPT method always achieves a
higher SCR value than the direct thresholding method. Similar results are
obtained when the algorithm is applied to other MSTAR data.

Acknowledgment: This work is supported by the Office of Naval Research
under Contract No. N00014-98-1-0615.
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Abstract

Methodologies for simulating the radar signatures of moving ground targets using
the shooting and bouncing ray (SBR) technique are investigated. The motions of interest
include both target movement as a whole with respect to background and sub-component
motion such as those due to wheels and turrets. The brute-force method to predict the
mulu-pulscradarsxgnanuelswsxmulaxcmctargctmgepmﬁlxatNd:ﬂaentdwell

time instances. To camy out the brute-force computation, we first generate N CAD
models of the target representing the states of the target and compute the range profiles
for all N models. Not only is the first step a tedious process, the second step requires a
computation time that is N times longer than that for a single range profile. Furthermore,
a completely new run must be carried out for a new set of motion parameters. Thcxcfoxc,'
two altemate approaches are investigated to more rapidly carry out dynamic signature
simulation. '

The first approach is based on an extrapolation algorithm. It is an extension of the
signature extrapolation algorithm for target look that we have developed previously for.
SBR (Bhalla and Ling, J. Electromag. Waves Applications, Feb. 1996). In this approach'_
we launch rays only once at the target. Given the ray history and the target motion, we'
use the differential Doppler information for each ray to predict its contribution at N txmc'
instances. The extrapolation algorithm requires only a single ray trace. However, 8
completely new run must still be carried out for a new set of motion parameters.

The second approach is to use the extracted 3D scattering center set (Bhalla and-
Ling, IEEE Trans. Antennas Propagat., Nov. 1996) from the target to predict the dynamic:
signature. During the extraction process, each scattering center is tied back to the:
component surfaces on the target that gave rise to that scattering center. It is thea:
possible to infer the motions onto the individual scattering centers associated with the
component. Using this approach, we can rapidly predict the target range profiles at the N
time instances. In addition, it is easy to cary out this procedure for arbitrary
target/component motions at little additional computation cost. Dynamic simulation
results for ground targets with various motion parameters using the different approaches
will be presented. '
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ABSTRACT

In this paper, ISAR images generated from measured data are compared to those from computer simulation in order to
evaluate the effectiveness of ISAR-based target identification. Three sets of images are generated including: (i) motion
compensated images from measured data using a joint time-frequency technique, (ii) reference images from measured data
and GPS-derived aircraft attitude data, and (iii) synthetic images predicted by Xpatch. Visual examination and correlation
analysis are undertaken to compare the three sets of images. In addition, two problem areas including JEM line corruption of
the measured images and three-dimensional rotation of the target are identified.

Keywords: inverse synthetic aperture radar (ISAR) imaging, motion compensation, joint time-frequency technique, Xpatch
image prediction

1. INTRODUCTION

High-resolution inverse synthetic aperture radar (ISAR) imaging has been regarded as a possible tool for target
identification." 2 There are two important components to an ISAR-based target ID system. The first component is the image
formation algorithm in which the raw data collected from an imaging radar is processed and motion compensated to form a
focused image of the unknown target. The second component is an image database of known targets populated by either
actual measurements or computer simulation. The focused image from measnrement is then matched against the image
database in order to determine the unknown target type. The success of an ISAR-based target ID system is therefore critically
dependent on the quality of these two basic building blocks. In this paper, we carry out a comparison of ISAR imageries
generated from motion compensated measure data and those from computer-simulated synthetic signatures. Our objectives
are to provide an assessment of the current capabilities and identify possible hurdles in ISAR-based target ID.?

For this purpose, three sets of images are generated. First, the motion compensated images are generated from radar
measurement data of an airplane in flight. Motion compensation is carried out using a joint time-frequency technique that has
been reported previously.* We shall refer to these images as the JTF-mocomp images. Second, a set of reference images is
generated by using the aircraft motion data collected during the flight from on-board GPS sensors. Even though this data is
available only from cooperative data collection and not in the real target ID scenario, it serves as the ground truth for
evaluating the effectiveness of the mocomp algorithm. We shall refer to these images as the GPS-reference images. Third,
synthetic images are simulated from a CAD model of the aircraft using the electromagnetic signature prediction code
Xpatch.5 We shall refer to these images as the Xpatch-synthetic images.

This paper is organized as follows. In Section 2, the detailed methods are given on generating the JTF-mocomp, the GPS-
reference and the Xpatch-synthetic ISAR images. Results are presented showing example images and the correlation between
the three sets of images. From the correlation coefficients, two problem areas are identified. In Section 3, we examine the jet
engine modulation (JEM) line issue in the frontal look region of the target and propose an algorithm to remove the JEM lines

* correspondence: Email:fei@ece.utexas.edu




from the measured images. In Section 4, we examine the variable imaging plane problem during certain portions of the flight.
Conclusions are given in Section 5.

2. MEASURED AND SYNTHETIC IMAGE GENERATION

With the radar I/Q data, the tracking data, the GPS data and the CAD model of the aircraft, measured and simulated 2-D
ISAR images can be generated. We first describe the procedures used to generate the JTF-mocomp, the GPS-reference and
the Xpatch-synthetic ISAR images. From these results, we next carry out a comparison to evaluate the effectiveness of the
motion compensation algorithm and the electromagnetic modeling.

2.1. Motion Compensation Using Joint Time-Frequency Algorithm

In the usual case of ISAR imaging where the complex target motion is not known, motion compensation is needed to form a
focused ISAR image. For this purpose, we use a previously developed adaptive JTF algorithm.* We assume that after the
coarse range alignment, all the scatterers are located in their respective range cells. The radar backscattered signal as a
function of dwell time tp, in a particular range cell can be written as

u 4
E(ty) = ZAk exp[—j—ﬂf (R(tp) + x, cosO(tp) + y, sinB(z,))] (1)
k=l c
where Ny is the number of point scatterers in that range cell, and A,, X, yx are respectively the scattering amplitude, down
range position and cross range position of the k™ point scatterer. R(tp) is the residual uncompensated translation displacement
and O(tp) is the rotational displacement. The JTF technique used here is a search and projection procedure to represent phase
behavior of the signal E(tp). To find the motion parameters, basis functions in the form of

h(t) = exp[—j27(f,t +-;- £t +% £ )

are chosen. We search for the basis function over the parameter space (fy, fi, f2) that best represents the time-frequency
behavior of the signal by maximizing the projection of the signal onto the basis:

. 2
max |[E(t)h"(¢)di| 3)
Jo-f1.f2

After the time-varying phase for the strongest point scatterer is found, we multiply the original signal by the conjugate of this
phase factor to compensate for the translation motion. This algorithm can also be extended to multiple range cells to correct
for higher order rotation motion. Figs. 1 and 2 show the JTF processing concept. After coarse range alignment, a particular
range bin may contain multiple scatterers with time-varying Doppler frequencies. The (dwell time)-(Doppler frequency)
behaviors of these scatterers are illustrated in Fig. 1(b). Fig. 2(a) shows the JTF behavior of a dominant scatterer in a range
cell from actual measurement data. We see from Fig. 2(b) that after the JTF compensation, its trajectory is straightened. After
applying the JTF motion compensation, the standard FFT processing in the dwell time domain brings the signal into the cross
range image domain.

2.2. Ground Truth Image Generation Using GPS Data

The motion parameters from on-board GPS sensors collected during the cooperative flight of the airplane are next used to
generate the ground truth ISAR images. The resulting reference images can be used to evaluate the quality of the JTF-
mocomp images from the last section. Furthermore, the motion data can be used to extract azimuth and elevation look angle
information for carrying out the electromagnetic simulation of the aircraft.

First, coordinate transformation is carried out since the GPS data is in the fixed Earth system, while the desired azimuth and
elevation angles are defined with respect to the local coordinate of the aircraft (see Fig. 3). The latter information is needed
for the simulation process and for determining the absolute scaling of the measured images along the cross range dimension.
Unlike the JTF motion compensation where the coarse range alignment is carried out based on range profile correlation, here
range data from the GPS measurement are used directly for range alignment. In addition, the aspect angle versus dwell time




information is used to correct for higher-order rotational motions. We reformat the data from uniform sampling in dwell time
to uniform sampling in aspect angle. The FFT is then used to generate the final ISAR images. Since the look angle
information is available, the resulting ISAR images can be scaled in the cross range dimension to absolute physical size.

2.3. Synthetic Signature Prediction Using Xpatch

To test the effectiveness of electromagnetic modeling for ISAR imaging, we generate the simulated ISAR images using
Xpatch and the radar and aircraft motion parameters from Section 2.2. Xpatch is an electromagnetic computation code based
on the shooting and bouncing ray method.® It can be used to compute the backscattering of complex targets of large electrical
sizes. In the Xpatch simulation, rays are shot from the incident look angle and all the multiple reflections are tracked until the
rays exit the target (see Fig. 4). The image is simulated by updating the ISAR image Elane one ray at a time using its ray-
spread function.” The image update is further accelerated by an FFT-based algorithm.” Note that this fast image simulation
algorithm requires only a single ray trace per image. It is therefore orders of magmtude faster than the conventional method
that requires multi-frequency, multi-aspect data. The typical simulation time using this approach is approximately 30 minutes
per image on an SGI O2 workstation.

While the ISAR images generated from Xpatch contain absolute scaling along the cross range dimension, the ISAR images
from the JTF-mocomp process is not calibrated along that dimension since the rotational speed is not known. Here we take
advantage of the look angle information derived from the GPS data. Prior to making any image comparisons, we first re-scale
the Xpatch images such that they have the same cross range resolution and scaling as the images from the measured data.

2.4. Image Comparisons

In this section, we make image comparisons among the three sets of ISAR images: the JTF-mocomp images, the GPS-
reference images and the Xpatch-synthetic images. Fig. 5 shows one set of such comparisons. The look angle is near tail-on
of the airplane. The JTF-mocomp image is shown in Fig. 5(a). It is fairly well focused and the features from the tail, the two
wings and the fuselage are clearly exposed. The GPS-reference image is shown in Fig. 5(b). We observe that the agreement
between the JTF-mocomp and the GPS-reference images is good. Fig. 5(c) shows the corresponding Xpatch-synthetic
image. Again the outline of the aircraft is readily observed in this image, although the image is much more focused than the
two images from measured data. Our experience shows that the JTF motion compensation works well during most of the
fight time. After a side-by-side visual examination, we find that most mocomp images are in fact slightly better focused than
the reference images. We believe this is due to the limited accuracy of the GPS sensor data. The synthetic images show good
qualitative agreement with the measured images. However, they are in general less diffused than the measured images. This
is not surprising since the synthetic image formation assumes no motion errors. Furthermore, the CAD model used does not
capture all of the fine details of the actual target.

While the comparison from visual examination shows promising agreement between the three sets of images, an image
correlation is undertaken for a more quantitative comparison. Before the correlation, the images are power transformed to
account for the different dynamic ranges. Fig. 6 shows both the correlation coefficient between the JTF and GPS images, and
that between the JTF and Xpatch images versus azimuth look angle. From the two curves, we see that the JTF-mocomp
images agree very well with its GPS-reference counterparts, indicating that blind motion compensation is a very feasible
method for processing real-world radar data. The correlation coefficient between the JTF and Xpatch images is in general
lower than that between the measured images. In particular, two problem regions can be seen from this plot. First, in the
region near nose-on (180 degrees in azimuth), the correlation coefficient is significantly lower. The reason is due to JEM
lines in the measured data. This problem is further discussed in Section 3 and an algorithm to remove JEM lines is proposed.
Second, at some angles around the broadside region (90 degrees in azimuth), the correlation coefficient is also low. The
associated JTF images are found to be of low quality. After further investigation, it is found that the image blurring is due to
variations in the imaging plane, not the motion compensation processing. This problem is discussed in detail in Section 4.

3. JEM REMOVAL

Jet engine modulation is a phenomenon caused by the high-speed rotational movement of the aircraft engine.” 1 For an
imaging radar, the typical PRF is much slower than the engine rotation frequency. Thus the resulting ISAR image in the
frontal region of an aircraft contains an aliased component along the cross range dimension. Such effect is difficult to predict
accurately using simulation. Furthermore, JEM lines are noise-like and can corrupt the geometrical features of the target in




the ISAR image. For target ID using 2D ISAR imaging, it would be useful to devise an algorithm to remove JEM lines, and
therefore enhance the image and the subsequent ID process.

Let us assume that the aircraft consists of a slow moving body with a constant rotational velocity €2, and a fast moving
engine component with a different rotational velocity Q,. Then the received radar return as a function of dwell time can be
written as:

N,
E(t,) = A, expl-j %(R(t[, )+ x, cOS(Q,t,) + , sin(,1,)]

“ i @
+ ) A exp[- J—AR(tp) + x, cos(Q15) +  Sin(L,1,)]
k=Ny+1 .

where N is the total number of point scatterers within one range cell, of which N, are the body scatterers. Usually €2, is much
greater than Q. While the first term can be meaningfully mapped into the image plane of the target via the Fourier transform,
the second term results in serious Doppler smearing across the cross range domain and may overshadow the target features.

We can also utilize the joint time-frequency technique described earlier under motion compensation to separate the fast
moving part from the relatively slow moving body.'! For the component due to target body scattering, the Doppler frequency
is

4 . 4
fr= Tiycgb[)’cos(ﬂbtp )+ xsin(Q,t,)] = Tﬂfgb()’ +xQutp) (5)
while the Doppler frequency due to the fast rotating part is
4 .
£ = T”Qp [ycos(Q, ) + xsin(Q,1,)] ©)

We can see that (5) is a linear function of dwell time while (6) is a sinusoidal function. In the time-frequency plane, the two
signals can thus be distinguished. If we further parameterize the signal by basis functions that have linear Doppler frequency
behavior as a function of dwell time, the two signals can be separated automatically by their displacement and slope
parameters. We utilize the adaptive joint time-frequency processing technique to carry out the parameterization. The basis
used is similar to that given in (2) with the linear and quadratic phase terms. The project and search procedure given in (3) is
carried out iteratively. At each iteration, the basis parameters (fy, f;) and B,, which is the maximum projection value of the
signal onto the basis, are found. The best basis at stage p is then removed from the signal:

E,.()=E, (1)~ B,h, () @

The searching process is iterated until the energy of the residue signal is smaller than a preset threshold. The signal
component due to the target scattering can thus be reconstructed by using all the bases with small displacement f; and small
slope parameter f;. Fig. 7 shows the correlation between the synthetic images and the measure images after JEM removal. We
observe that the correlation coefficients in the JEM region are increased after we remove the JEM interference from the body.

4. IMAGING PLANE VARIATION

From the correlation curves, some images generated from the measured data outside of the JEM angular region are also found
to be poorly focused. For those frames, we have found that the associated GPS-reference images also fail. If we assume the
data quality from the radar did not change abruptly, the cause must not be in the motion compensation algorithm, but rather
from extraneous motions during the imaging interval, which cannot be handled by any motion compensation method. Here
we examine the possible causes. The movement of the aircraft in space relative to the ground radar consists of radial motion
and rotational motion. Because the range alignment process can remove the radial motion, what remains a problem is the 3D
rotational motion of the aircraft. Suppose during the imaging interval the rotational motion is described by the look angles (6,
¢) on the target. The requirement of a constant rotation axis described by (8y, ¢p) leads to the following equation that
constraints the values of (0, ¢):




sin@, sin@cos(¢ — @, ) +cosf, cosf =0 ®

If 8,=0, eq. (8) requires 6=m/2. In this case, the aircraft rotates about its vertical axis and the imaging plane is the top view of
the airplane. If 8,=v2 and ¢y=n/2, then ¢=0. In this case, the aircraft rotates about its axis along the wing and the imaging
plane is the side view of the airplane.

The images from these two cases will be quite different. If an imaging interval includes both types of motion, the resulting
image is expected to be unfocused. Although this is an extreme example, we do observe several cases in the real data where
the imaging plane variation in the 128 pulse records leads to bad images. Fig. 8 shows a particular example of imaging plane
variation. From the azimuth-elevation plot in Fig. 8(a) derived from the GPS data, we recognize two different imaging
planes. During the first half of the 128 records, the aircraft undertakes nearly a vertical rotation, while during the second part
it undertakes a horizontal rotation. So we get a very smeared image as shown in Fig. 8(b). We can get a better image by using
only the first part or the second part of the data. The resulting image from the first part of the data is a side view of the
aircraft, while the image from the second part of the data is a top view of the aircraft. Unfortunately, we usually do not have
access to the aircraft attitude data on non-cooperative targets. In such cases, the questions of how to detect imaging plane
variation and how to form the best possible images become important research issues. This topic is currently under
investigation by us.

5. CONCLUSIONS

To evaluate the effectiveness of ISAR-based target ID, ISAR images generated from measured data are compared to those
from computer simulation. Three sets of images are generated including: (i) motion compensated images from measured data
using a joint time-frequency technique, (ii) reference images from measured data and GPS-derived aircraft attitude data, and
(iii) synthetic images predicted by Xpatch. Visual examination and correlation analysis are undertaken to compare the three
sets of images. Through the comparisons, the following conclusions can be made. First, JTF motion compensation method
performed well with real world ISAR data. Second, Xpatch is a feasible tool to generate a synthetic image database for
ISAR-based target ID. Two problem areas are also identified. JEM line corruption of the measured images is quite severe in
the frontal sector of air targets. A possible algorithm based on joint time-frequency technique is proposed to remove the JEM
lines. In addition, the problem of imaging plane variation is identified to be the cause of poor ISAR images during some time
of the flight. Further investigation is needed to devise methods to overcome this problem.
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Fig. 1.  Fine motion compensation is carried out by extracting
the Doppler frequency versus dwell time behavior of
the strong point scatterer in the signal.
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Fig. 2.  Trajectory of a strong scatterer in the (dwell time)-
(Doppler-frequency) plane from measured data.
(a) Before JTF motion compensation.
(b) After ITF motion compensation.
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Application of Adaptive Joint Time-Frequency
Processing to ISAR Image Formation

Hao Ling and Junfei Li
Dept. of Electrical and Computer Engineering
The Univ. of Texas at Austin
Austin, TX 78712-1084

I. Introduction

High-resolution inverse synthetic aperture radar (ISAR) imaging is a promising tool for non-cooperative
target identification (NCTI). The main challenge in ISAR-based NCTI is to form a well-focused image of
an articulating target with unknown motion. In this paper, we first review the application of joint time-
frequency methods for ISAR image formation. By using an adaptive joint time-frequency (AJTF) algorithm
to estimate the phase of the prominent scatterers, we show that the target motion can be estimated and a
focused image of the target can be constructed. Results of applying the algorithm to measured ISAR data
are presented and discussed. Secondly, we report on our recent work to extend the AJTF algorithm to
address the more challenging situation when the motion of the target is not limited to a two-dimensional
plane. In particular, we discuss our research to: (i) detect the presence of three-dimensional motion using
the AJTF algorithm, and (ii) develop algorithms to focus the image in the presence of complex three-
dimensional motion.

2. ISAR Motion Compensation Using Joint Time-Frequency Algorithm

We first review the application of joint time-frequency methods for ISAR image formation. To form a
focused image from raw radar data, it is customary to first carry out a coarse alignment of the data in the
range dimension, followed by fine motion compensation in the cross range dimension. Joint time-
frequency techniques have been shown to be a useful tool to carry out the fine motion compensation [1,2].
We assume that after the coarse range alignment, all the scatterers are located in their respective range
cells. The radar backscattered signal as a function of dwell time ¢ in a particular range cell can be written as

N
E(t)= 3 A eJcp[—ji-7y—c(R(t)+.t/c cosO(t)+ y; sinf(t))] ¢))
k=1 c

where N is the number of point scatterers in that range cell, and A, x;, y; are respectively the scattering
amplitude, down range position and cross range position of the k™ point scatterer. R(?) is the residual
uncompensated translation displacement and &) is the rotational displacement. Due to translation and
rotational motion, the Doppler frequency versus dwell time behavior of the point scatterers within this
range cell is not constant in the joint time-frequency plane (see Fig. 1). An effective JTF technique to
extract the motion parameters is based on a search and projection procedure to represent the phase behavior
of the signal E(t). This procedure is based on the adaptive spectrogram proposed in [3], and is similar in
concept to a one-term matching pursuit algorithm [4]. We shall term it the adaptive JTF (AJTF) algorithm.
To find the motion parameters, basis functions in the form of

h(t)=exp[——j(a1t+a2t2+a3t3 )] : )

are chosen. We search for the basis function over the parameter space (a,, az, as) that best represents the
time-frequency behavior of the signal by maximizing the projection of the signal onto the basis:

.2
max |[E(t 1" (¢)d| )
a;.az.az




After the time-varying phase for the strongest point scatterer is found, we multiply the original signal by
the conjugate of this phase factor to compensate for the translation motion. This algorithm can aiso be
extended to muitiple range cells to correct for higher order rotation motion. After applying the JTF motion
compensation, the standard FFT processing in the dwell time domain brings the signal into the cross range
image domain. Results of applying the algorithm to simulated and measured ISAR data will be presented

and discussed.
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Fine motion compensation is carried out by extracting
the Doppler frequency versus dwell time behavior of
the strong point scatterer in the signal.

Fig. 1.

3. Three-Dimensional Motion Estimation Using Joint Time-Frequency Algorithm

One basic assumption of standard motion compensation algorithms is that the target only undergoes
motion in a two-dimensional plane during the dwell duration needed to form an image. From several
independent examinations of measured ISAR data sets recently, it was reported that the presence of three-
dimensional motion is quite detrimental to focusing the image [5-7]. We shall report on our recent work to
extend the AJTF algorithm to address the more challenging situation when the motion of the target is not
limited to a two-dimensional plane. In particular, we discuss our research to: (i) detect the presence of
three-dimensional motion using the AJTF algorithm, and (ii) develop algorithms to focus the image in the

presence of complex three-dimensional motion.
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Fig. 2. (a) Simulated 2D target motion. (b) Phase behavior of the prominent point
scatterer in range cell 1 extracted using AJTF. (c) Phase behavior of the prominent
point scatterer in range cell 2 extracted using AJITF. (d) Ratios of the extracted
phase parameters from the two range cells. Note that they are nearly constant.
(e)-(h) Similar to (a)-(d), except that 3D motion is assumed. The resulting ratios in
(h) are no longer constant.

Allowing for arbitrary three-dimensional motion in space, we consider the following model as a
generalization of the model for two-dimensional motion in (1):

N .47#6_
E(t)=Y A exp[—JT(xk +y0+2,0)] o)
k=1

where @is the azimuth angle of the target with respect to the radar, and ¢ is the elevation angle. In (4), it is
assumed that the translation motion has been removed and that the standard small-angle, small bandwidth




approximations apply. This model reduces to the standard two-dimensional motion model when & and ¢
are linearly related.

In general, a focused image cannot be obtained from the standard two-dimensional motion
compensation algorithm when three-dimensional target motion is present due to model mismatch.
Therefore, it would be useful to detect the presence of three-dimensional motion directly from the radar
data. Our approach is to utilize the AJTF algorithm to extract the phase behavior of the radar data at
multiple range cells. We first parameterize the phase of the prominent point scatter in one range cell using
AJTF. Next we repeat the same procedure at another range cell. It can be shown that when the target
undergoes only two-dimensional motion during the dwell duration, the ratio between the parameters (a;, a;,
a;) extracted from one range cell and those corresponding parameters in another range cell should be
constant. Therefore, by examining the ratio of the parameters, we can distinguish two-dimensional motion
from three-dimensional motion. Fig. 2 illustrates the idea using simulated point scatterer data. Figs. 2(a)-
(d) show the two-dimensional motion scenario and Figs. 2(e)-(h) show the three-dimensional scenario. It
can be seen from the results in Fig. 2(d) that the determined ratios:

c; =afrange cell 1)/ afrange cell 2) 5)

are nearly constant for all the terms in case of two-dimensional motion, as expected. For three-dimensional
motion, the ratios are not the same, as seen in Fig. 2(h). Results of applying this concept to radar data in
order to isolate the time durations when the target undergoes three-dimensional motion will be presented.
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